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Matrices

Recall that an m × n matrix with entries in R (or C) is an array of
numbers with m rows and n columns.

Examples

Here are examples of 3× 2 and 4× 4 matrices:

 3 −2
e 1

−π
√

2




0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
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Eigenvalues

This is how we multiply a vector by a matrixa11 a12 a13
a21 a22 a23
a31 a32 a33

v1
v2
v3

 =

a11v1 + a12v2 + a13v3
a21v1 + a22v2 + a23v3
a31v1 + a32v2 + a33v3



Examples (
2 −1
3 4

)(
2
7

)
=

(
−3
34

)
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Eigenvalues

We say that λ ∈ C is an eigenvalue of a square matrix A if

Av = λv

for some vector v. It turns out that there are n eigenvalues (up to
multiplicity) of an n × n matrix A.

Examples −2 −4 2
−2 1 2
4 2 5

 2
−3
−1

 = 3

 2
−3
−1


so 3 is an eigenvalue of the original matrix.
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Spectral Theorem

Examples

Here is a symmetric matrix: 1 2 3
2 7 4
3 4 9



If a matrix is symmetric and real, then all of its eigenvalues are real.
Generally, we order the eigenvalues as follows:

λ1 ≤ λ2 ≤ · · · ≤ λn.

From now on, we only consider real symmetric matrices.
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Random Variables

Define a probability density p(x) to be a function

p : R→ R≥0

such that
∫
R p(x)dx = 1.

Andrew Yao and Gopal K. Goel Derivatives of the Gaussian Free Field via Random Matrices May 2018 6 / 16



Random Variables

A random variable X with values in R and density p(x) is a “random
number in R which can be sampled such that its frequency (histogram) as
the number of samples increase converge to p(x).”

More precisely,

Pr(a ≤ X ≤ b) =

∫ b

a
p(x)dx .

We say two random variables X and Y are independent if the outcome of
X does not affect the outcome of Y and vice versa. For example, if X is
the value of a flip of a coin, and Y is of another coin, then X and Y are
independent. However, if X is the weather today, and Y is the weather
tomorrow, then X and Y are not independent, i.e. correlated.
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Example: Gaussian Random Variable

A Gaussian Random Variable is one that has

p(x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
.

Here is a sample of 10000 Gaussian random variables with µ = 0 and
σ = 1.
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Random Vectors

Define a joint probability density p(x) to be a function

p : Rn → R≥0

such that
∫
Rn p(x)dxn = 1.

A random vector is a vector in Rn that takes random values with joint
distribution p(x).
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Random Matrices

A random matrix is a matrix whose entries are random variables. Note
that the entries do not have to be independent.

We can now consider the (random) eigenvalues of these matrices, etc.

As an example, a Wigner random matrix is a symmetric random matrix
whose upper triangular entries are independent and identically distributed.

We look at a special case, namely the Gaussian Orthogonal Ensemble,
which is a Wigner matrix whose entries are Gaussian. Let XN be an N ×N
GOE matrix.
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Our Work

It was known that the eigenvalues of XN converge to the Gaussian Free
Field as N →∞. Letting λ1, . . . , λN be the eigenvalues of XN , it suffices
to study

λk1 + · · ·+ λkN = trX k
N

for all positive integers k (as N →∞).

We looked at a “discrete derivative” of XN , which means we looked at the
eigenvalues of XN , along with the eigenvalues µ1, . . . , µN−1 of the
submatrix XN−1. Again, it suffices to study

λk1 + · · ·+ λkN − µk1 − · · · − µkN−1 = trX k
N − trX k

N−1

for all positive integers k. We found that this did converge to the
derivative of the GFF.
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Combinatorics

We can expand the trace in terms of the entries as

trX k
N =

N∑
i1,...,ik=1

XN(i1, i2)XN(i2, i3) · · ·XN(ik , i1).

Then,

E trX k
N =

N∑
i1,...,ik=1

EXN(i1, i2)XN(i2, i3) · · ·XN(ik , i1).

Now, all results reduce to combinatorics of graphs constructed from
(i1, . . . , iN).

Vertices are {i1, . . . , ik}
Edges are {{i1, i2}, {i2, i3}, . . . , {ik , i1}}

Andrew Yao and Gopal K. Goel Derivatives of the Gaussian Free Field via Random Matrices May 2018 12 / 16



Unicyclic Graphs

Only unicyclic graphs contribute in the limit N →∞:

These graphs have the same number of vertices and edges.
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Discrete Derivative Combinatorics

Note that

trX k
N − trX k

N−1 =
N∑

i1,...,ik=1

XN(i1, i2)XN(i2, i3) · · ·XN(ik , i1)

−
N∑

i1,...,ik=2

XN(i1, i2)XN(i2, i3) · · ·XN(ik , i1)

=
N∑

i1,...,ik=1
∃j s.t ij=1

XN(i1, i2)XN(i2, i3) · · ·XN(ik , i1).

Our corresponding graph is rooted at 1: it must contain the vertex 1.
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Future Directions

The main idea is to look at higher discrete derivatives. However, we have
reason to believe that the mth discrete derivative of XN converges to the
mth derivative of the GFF for m ≥ 2, but these derivatives are infinite.
This has to do with the fact that after taking a derivative of the GFF, the
elements of the GFF become “too independent” of one another.

Another possible direction is to look at edge results of the eigenvalues
after taking a discrete derivative. This has to do with looking at the
largest eigenvalues of the random matrices, and understanding their
statistical properties.

Andrew Yao and Gopal K. Goel Derivatives of the Gaussian Free Field via Random Matrices May 2018 15 / 16



Future Directions

The main idea is to look at higher discrete derivatives. However, we have
reason to believe that the mth discrete derivative of XN converges to the
mth derivative of the GFF for m ≥ 2, but these derivatives are infinite.
This has to do with the fact that after taking a derivative of the GFF, the
elements of the GFF become “too independent” of one another.

Another possible direction is to look at edge results of the eigenvalues
after taking a discrete derivative. This has to do with looking at the
largest eigenvalues of the random matrices, and understanding their
statistical properties.

Andrew Yao and Gopal K. Goel Derivatives of the Gaussian Free Field via Random Matrices May 2018 15 / 16



Acknowledgements

Our mentor, Andrew Ahn

Prof. Vadim Gorin for suggesting the problem

The MIT Math Department

The MIT-PRIMES Program

Prof. Pavel Etingof

Dr. Slava Gerovitch

Dr. Tanya Khovanova

Our parents

Andrew Yao and Gopal K. Goel Derivatives of the Gaussian Free Field via Random Matrices May 2018 16 / 16


