Derivatives of the Gaussian Free Field via Random Matrices

Andrew Yao and Gopal K. Goel

PRIMES Conference 2018

Matrices

Recall that an $m \times n$ matrix with entries in \mathbb{R} (or \mathbb{C}) is an array of numbers with m rows and n columns.

Matrices

Recall that an $m \times n$ matrix with entries in \mathbb{R} (or \mathbb{C}) is an array of numbers with m rows and n columns.

Examples

Here are examples of 3×2 and 4×4 matrices:

$$
\left(\begin{array}{cc}
3 & -2 \\
e & 1 \\
-\pi & \sqrt{2}
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3
\end{array}\right)
$$

Eigenvalues

This is how we multiply a vector by a matrix

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{11} v_{1}+a_{12} v_{2}+a_{13} v_{3} \\
a_{21} v_{1}+a_{22} v_{2}+a_{23} v_{3} \\
a_{31} v_{1}+a_{32} v_{2}+a_{33} v_{3}
\end{array}\right)
$$

Eigenvalues

This is how we multiply a vector by a matrix

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{11} v_{1}+a_{12} v_{2}+a_{13} v_{3} \\
a_{21} v_{1}+a_{22} v_{2}+a_{23} v_{3} \\
a_{31} v_{1}+a_{32} v_{2}+a_{33} v_{3}
\end{array}\right)
$$

Examples

$$
\left(\begin{array}{cc}
2 & -1 \\
3 & 4
\end{array}\right)\binom{2}{7}=\binom{-3}{34}
$$

Eigenvalues

We say that $\lambda \in \mathbb{C}$ is an eigenvalue of a square matrix A if

$$
A v=\lambda v
$$

for some vector v . It turns out that there are n eigenvalues (up to multiplicity) of an $n \times n$ matrix A.

Eigenvalues

We say that $\lambda \in \mathbb{C}$ is an eigenvalue of a square matrix A if

$$
A v=\lambda v
$$

for some vector v . It turns out that there are n eigenvalues (up to multiplicity) of an $n \times n$ matrix A.

Examples

$$
\left(\begin{array}{ccc}
-2 & -4 & 2 \\
-2 & 1 & 2 \\
4 & 2 & 5
\end{array}\right)\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)=3\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)
$$

so 3 is an eigenvalue of the original matrix.

Spectral Theorem

Examples

Here is a symmetric matrix:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 7 & 4 \\
3 & 4 & 9
\end{array}\right)
$$

Spectral Theorem

Examples

Here is a symmetric matrix:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 7 & 4 \\
3 & 4 & 9
\end{array}\right)
$$

If a matrix is symmetric and real, then all of its eigenvalues are real. Generally, we order the eigenvalues as follows:

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} .
$$

From now on, we only consider real symmetric matrices.

Random Variables

Define a probability density $p(x)$ to be a function

$$
p: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}
$$

such that $\int_{\mathbb{R}} p(x) d x=1$.

Random Variables

A random variable X with values in \mathbb{R} and density $p(x)$ is a "random number in \mathbb{R} which can be sampled such that its frequency (histogram) as the number of samples increase converge to $p(x)$."

Random Variables

A random variable X with values in \mathbb{R} and density $p(x)$ is a "random number in \mathbb{R} which can be sampled such that its frequency (histogram) as the number of samples increase converge to $p(x)$."

More precisely,

$$
\operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} p(x) d x
$$

Random Variables

A random variable X with values in \mathbb{R} and density $p(x)$ is a "random number in \mathbb{R} which can be sampled such that its frequency (histogram) as the number of samples increase converge to $p(x)$."

More precisely,

$$
\operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} p(x) d x
$$

We say two random variables X and Y are independent if the outcome of X does not affect the outcome of Y and vice versa. For example, if X is the value of a flip of a coin, and Y is of another coin, then X and Y are independent. However, if X is the weather today, and Y is the weather tomorrow, then X and Y are not independent, i.e. correlated.

Example: Gaussian Random Variable

A Gaussian Random Variable is one that has

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

Here is a sample of 10000 Gaussian random variables with $\mu=0$ and $\sigma=1$.

Random Vectors

Define a joint probability density $p(x)$ to be a function

$$
p: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}
$$

such that $\int_{\mathbb{R}^{n}} p(x) d x^{n}=1$.
A random vector is a vector in \mathbb{R}^{n} that takes random values with joint distribution $p(x)$.

Random Matrices

A random matrix is a matrix whose entries are random variables. Note that the entries do not have to be independent.

We can now consider the (random) eigenvalues of these matrices, etc.

Random Matrices

A random matrix is a matrix whose entries are random variables. Note that the entries do not have to be independent.

We can now consider the (random) eigenvalues of these matrices, etc.
As an example, a Wigner random matrix is a symmetric random matrix whose upper triangular entries are independent and identically distributed.

Random Matrices

A random matrix is a matrix whose entries are random variables. Note that the entries do not have to be independent.

We can now consider the (random) eigenvalues of these matrices, etc.
As an example, a Wigner random matrix is a symmetric random matrix whose upper triangular entries are independent and identically distributed.

We look at a special case, namely the Gaussian Orthogonal Ensemble, which is a Wigner matrix whose entries are Gaussian. Let X_{N} be an $N \times N$ GOE matrix.

Our Work

It was known that the eigenvalues of X_{N} converge to the Gaussian Free Field as $N \rightarrow \infty$. Letting $\lambda_{1}, \ldots, \lambda_{N}$ be the eigenvalues of X_{N}, it suffices to study

$$
\lambda_{1}^{k}+\cdots+\lambda_{N}^{k}=\operatorname{tr} X_{N}^{k}
$$

for all positive integers k (as $N \rightarrow \infty$).

Our Work

It was known that the eigenvalues of X_{N} converge to the Gaussian Free Field as $N \rightarrow \infty$. Letting $\lambda_{1}, \ldots, \lambda_{N}$ be the eigenvalues of X_{N}, it suffices to study

$$
\lambda_{1}^{k}+\cdots+\lambda_{N}^{k}=\operatorname{tr} X_{N}^{k}
$$

for all positive integers k (as $N \rightarrow \infty$).
We looked at a "discrete derivative" of X_{N}, which means we looked at the eigenvalues of X_{N}, along with the eigenvalues $\mu_{1}, \ldots, \mu_{N-1}$ of the submatrix X_{N-1}. Again, it suffices to study

$$
\lambda_{1}^{k}+\cdots+\lambda_{N}^{k}-\mu_{1}^{k}-\cdots-\mu_{N-1}^{k}=\operatorname{tr} X_{N}^{k}-\operatorname{tr} X_{N-1}^{k}
$$

for all positive integers k. We found that this did converge to the derivative of the GFF.

Combinatorics

We can expand the trace in terms of the entries as

$$
\operatorname{tr} X_{N}^{k}=\sum_{i_{1}, \ldots, i_{k}=1}^{N} X_{N}\left(i_{1}, i_{2}\right) X_{N}\left(i_{2}, i_{3}\right) \cdots X_{N}\left(i_{k}, i_{1}\right)
$$

Then,

$$
\mathbb{E} \operatorname{tr} X_{N}^{k}=\sum_{i_{1}, \ldots, i_{k}=1}^{N} \mathbb{E} X_{N}\left(i_{1}, i_{2}\right) X_{N}\left(i_{2}, i_{3}\right) \cdots X_{N}\left(i_{k}, i_{1}\right)
$$

Now, all results reduce to combinatorics of graphs constructed from $\left(i_{1}, \ldots, i_{N}\right)$.

- Vertices are $\left\{i_{1}, \ldots, i_{k}\right\}$
- Edges are $\left\{\left\{i_{1}, i_{2}\right\},\left\{i_{2}, i_{3}\right\}, \ldots,\left\{i_{k}, i_{1}\right\}\right\}$

Unicyclic Graphs

Only unicyclic graphs contribute in the limit $N \rightarrow \infty$:

These graphs have the same number of vertices and edges.

Discrete Derivative Combinatorics

- Note that

$$
\begin{aligned}
\operatorname{tr} X_{N}^{k}-\operatorname{tr} X_{N-1}^{k} & =\sum_{\substack{i_{1}, \ldots, i_{k}=1}}^{N} X_{N}\left(i_{1}, i_{2}\right) X_{N}\left(i_{2}, i_{3}\right) \cdots X_{N}\left(i_{k}, i_{1}\right) \\
& -\sum_{i_{1}, \ldots, i_{k}=2}^{N} X_{N}\left(i_{1}, i_{2}\right) X_{N}\left(i_{2}, i_{3}\right) \cdots X_{N}\left(i_{k}, i_{1}\right) \\
& =\sum_{\substack{i_{1}, \ldots, i_{k}=1 \\
\exists j \text { s.t } i_{j}=1}}^{N} X_{N}\left(i_{1}, i_{2}\right) X_{N}\left(i_{2}, i_{3}\right) \cdots X_{N}\left(i_{k}, i_{1}\right) .
\end{aligned}
$$

- Our corresponding graph is rooted at 1 : it must contain the vertex 1 .

Future Directions

The main idea is to look at higher discrete derivatives. However, we have reason to believe that the m th discrete derivative of X_{N} converges to the m th derivative of the GFF for $m \geq 2$, but these derivatives are infinite. This has to do with the fact that after taking a derivative of the GFF, the elements of the GFF become "too independent" of one another.

Future Directions

The main idea is to look at higher discrete derivatives. However, we have reason to believe that the m th discrete derivative of X_{N} converges to the m th derivative of the GFF for $m \geq 2$, but these derivatives are infinite. This has to do with the fact that after taking a derivative of the GFF, the elements of the GFF become "too independent" of one another.

Another possible direction is to look at edge results of the eigenvalues after taking a discrete derivative. This has to do with looking at the largest eigenvalues of the random matrices, and understanding their statistical properties.

Acknowledgements

- Our mentor, Andrew Ahn
- Prof. Vadim Gorin for suggesting the problem
- The MIT Math Department
- The MIT-PRIMES Program
- Prof. Pavel Etingof
- Dr. Slava Gerovitch
- Dr. Tanya Khovanova
- Our parents

